Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
2.
Biomed Res Int ; 2021: 8112783, 2021.
Article in English | MEDLINE | ID: covidwho-1378089

ABSTRACT

Long noncoding RNAs (lncRNAs) have been reported to participate in regulating many biological processes, including immune response to influenza A virus (IAV). However, the association between lncRNA expression profiles and influenza infection susceptibility has not been well elucidated. Here, we analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs among IAV-infected adult rat (IAR), normal adult rat (AR), IAV-infected junior rat (IJR), and normal junior rat (JR) by RNA sequencing. Compared with differently expressed lncRNAs (DElncRNAs) between AR and IAR, 24 specific DElncRNAs were found between IJR and JR. Then, based on the fold changes and P value, the top 5 DElncRNAs, including 3 upregulated and 2 downregulated lncRNAs, were chosen to establish a ceRNA network for further disclosing their regulatory mechanisms. To visualize the differentially expressed genes in the ceRNA network, GO and KEGG pathway analysis was performed to further explore their roles in influenza infection of junior rats. The results showed that the downregulated DElncRNA-target genes were mostly enriched in the IL-17 signaling pathway. It indicated that the downregulated lncRNAs conferred the susceptibility of junior rats to IAV via mediating the IL-17 signaling pathway.


Subject(s)
Influenza A virus/pathogenicity , MicroRNAs/genetics , Orthomyxoviridae Infections/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Animals , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Influenza A virus/isolation & purification , Interleukin-17/genetics , Interleukin-17/immunology , MicroRNAs/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , RNA, Long Noncoding/immunology , RNA, Messenger/immunology , Rats , Rats, Sprague-Dawley
3.
Aging (Albany NY) ; 13(5): 6273-6288, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1154950

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with a poor prognosis. The current coronavirus disease 2019 (COVID-19) shares some similarities with IPF. SARS-CoV-2 related genes have been reported to be broadly regulated by N6-methyladenosine (m6A) RNA modification. Here, we identified the association between m6A methylation regulators, COVID-19 infection pathways, and immune responses in IPF. The characteristic gene expression networks and immune infiltration patterns of m6A-SARS-CoV-2 related genes in different tissues of IPF were revealed. We subsequently evaluated the influence of these related gene expression patterns and immune infiltration patterns on the prognosis/lung function of IPF patients. The IPF cohort was obtained from the Gene Expression Omnibus dataset. Pearson correlation analysis was performed to identify the correlations among genes or cells. The CIBERSORT algorithm was used to assess the infiltration of 22 types of immune cells. The least absolute shrinkage and selection operator (LASSO) and proportional hazards model (Cox model) were used to develop the prognosis prediction model. Our research is pivotal for further understanding of the cellular and genetic links between IPF and SARS-CoV-2 infection in the context of the COVID-19 pandemic, which may contribute to providing new ideas for prognosis assessment and treatment of both diseases.


Subject(s)
Adenosine/analogs & derivatives , COVID-19/genetics , Gene Regulatory Networks , Idiopathic Pulmonary Fibrosis/genetics , Adenosine/genetics , Adenosine/immunology , Algorithms , COVID-19/diagnosis , COVID-19/immunology , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/immunology , Immunity , Immunity, Cellular , Prognosis , RNA/genetics , RNA/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
4.
Signal Transduct Target Ther ; 6(1): 126, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1147832

ABSTRACT

The efficient induction and long-term persistence of pathogen-specific memory CD8 T cells are pivotal to rapidly curb the reinfection. Recent studies indicated that long-noncoding RNAs expression is highly cell- and stage-specific during T cell development and differentiation, suggesting their potential roles in T cell programs. However, the key lncRNAs playing crucial roles in memory CD8 T cell establishment remain to be clarified. Through CD8 T cell subsets profiling of lncRNAs, this study found a key lncRNA-Snhg1 with the conserved naivehi-effectorlo-memoryhi expression pattern in CD8 T cells of both mice and human, that can promote memory formation while impeding effector CD8 in acute viral infection. Further, Snhg1 was found interacting with the conserved vesicle trafficking protein Vps13D to promote IL-7Rα membrane location specifically. With the deep mechanism probing, the results show Snhg1-Vps13D regulated IL-7 signaling with its dual effects in memory CD8 generation, which not just because of the sustaining role of STAT5-BCL-2 axis for memory survival, but more through the STAT3-TCF1-Blimp1 axis for transcriptional launch program of memory differentiation. Moreover, we performed further study with finding a similar high-low-high expression pattern of human SNHG1/VPS13D/IL7R/TCF7 in CD8 T cell subsets from PBMC samples of the convalescent COVID-19 patients. The central role of Snhg1-Vps13D-IL-7R-TCF1 axis in memory CD8 establishment makes it a potential target for improving the vaccination effects to control the ongoing pandemic.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Interleukin-7/immunology , Proteins/immunology , RNA, Long Noncoding/immunology , SARS-CoV-2/immunology , Secretory Vesicles/immunology , Signal Transduction/immunology , Animals , Biological Transport, Active , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Humans , Immunologic Memory , Mice , Secretory Vesicles/pathology
5.
Viruses ; 13(3)2021 03 03.
Article in English | MEDLINE | ID: covidwho-1125782

ABSTRACT

The recently emerged SARS-CoV-2 virus is responsible for the ongoing COVID-19 pandemic that has rapidly developed into a global public health threat. Patients severely affected with COVID-19 present distinct clinical features, including acute respiratory disorder, neutrophilia, cytokine storm, and sepsis. In addition, multiple pro-inflammatory cytokines are found in the plasma of such patients. Transcriptome sequencing of different specimens obtained from patients suffering from severe episodes of COVID-19 shows dynamics in terms of their immune responses. However, those host factors required for SARS-CoV-2 propagation and the underlying molecular mechanisms responsible for dysfunctional immune responses during COVID-19 infection remain elusive. In the present study, we analyzed the mRNA-long non-coding RNA (lncRNA) co-expression network derived from publicly available SARS-CoV-2-infected transcriptome data of human lung epithelial cell lines and bronchoalveolar lavage fluid (BALF) from COVID-19 patients. Through co-expression network analysis, we identified four differentially expressed lncRNAs strongly correlated with genes involved in various immune-related pathways crucial for cytokine signaling. Our findings suggest that the aberrant expression of these four lncRNAs can be associated with cytokine storms and anti-viral responses during severe SARS-CoV-2 infection of the lungs. Thus, the present study uncovers molecular interactions behind the cytokine storm activation potentially responsible for hyper-inflammatory responses in critical COVID-19 patients.


Subject(s)
COVID-19/genetics , COVID-19/immunology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , SARS-CoV-2/physiology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/virology , Cytokines/genetics , Cytokines/immunology , Gene Regulatory Networks , Humans , Lung/immunology , Lung/virology , RNA, Long Noncoding/immunology , RNA, Messenger/immunology , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL